独立行政法人 理化学研究所
ライフサイエンス技術基盤研究センター 構造・合成生物学部門 生命分子制御研究グループ 合成分子生物学研究チーム

>> English
トップページ 研究内容 研究室メンバー 発表論文 新聞報道等 学会発表/
講演等
連絡先/
アクセス
人材募集/
学生募集
フォトギャラリー

Bibliography/Nucleic Acid Symp.Ser./Japanese Journals

2014 Synthetic Genetic Polymers Functioning to Store and Propagate Information by Genetic alphabet expansion.
I. Hirao, Encycl. Mol. Cell. Biol. Mol. Med. DOI: 10.1002/3527600906.mcb.20120082.
2014 Creation of Unnatural Base Pair Systems Toward New DNA/RNA Biotechnologies.
I. Hirao and M. Kimoto, in The Chemical Biology of Nucleic Acids. (eds V.A. Erdmann, W.T. Markiewicz, J. Barciszewski), 132-148. Splinger
2013 Chemical fidelity of an RNA polymerase ribozyme.
J. Attwater, S. Tagami, M. Kimoto, K. Butler, E. T. Kool, J. Wengel, P. Herdewijn, I. Hirao and P. Holliger, Chem. Sci., 4,2804-2814. doi: 10.1039/C3SC50574J.
2013 Generation of high-affinity DNA aptamers using an expanded genetic alphabet.
M. Kimoto, R. Yamashige, K. Matsunaga, S. Yokoyama, I. Hirao, Nat. Biotechnol., 31, 453-457. PubMed
2013 Site-specific functional labeling of nucleic acids by in vitro replication and transcription using unnatural base pair systems.
M. Kimoto, Y. Hikida, and I. Hirao, Israel J. Chem., 53, 450-468. doi: 10.1002/ijch.201300013.
2012 Site-specific functionalization of RNA molecules by an unnatural base pair transcription system via click chemistry.
T. Ishizuka, M. Kimoto, A. Sato, and I. Hirao, Chem. Commun., 48, 10835-10837. PubMed
2012 Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma.
I. Hirao, M. Kimoto, Proc. Jpn. Acad., Ser. B, 88, 345-367. PubMed
2012 PCR Amplification and Transcription for Site-Specific Labeling of Large RNA Molecules by a Two-Unnatural Base Pair System .
M. Kimoto, R. Yamashige, S. Yokoyama, and I. Hirao, J. Nucleic Acids, 2012:230943. PubMed
2012 Natural versus Artificial Creation of Base Pairs in DNA: Origin of Nucleobases from the Perspectives of Unnatural Base Pair Studies .
I. Hirao, M. Kimoto, and R. Yamashige, Acc. Chem. Res., 2012, 45, pp 2055-2065. PubMed
2012 Site-Specific Incorporation of Functional Components into RNA by an Unnatural Base Pair Transcription System.
N. Morohashi, M. Kimoto, A. Sato, R. Kawai, and I. Hirao, Molecules, 17, 2855-2876. PubMed
2012 Highly specific unnatural base pair systems as a third base pair for PCR amplification.
R. Yamashige, M. Kimoto, Y. Takezawa, A. Sato, T. Mitsui, S. Yokoyama, and I. Hirao, Nucleic Acids Res., 40, 2793-2806. PubMed
2011 Monitoring the site-specific incorporation of dual fluorophore-quencher base analogues for target DNA detection by an unnatural base pair system.
R. Yamashige, M. Kimoto, T. Mitsui, S. Yokoyama, and I. Hirao, Org. Biomol. Chem., 9, 7504-7509. PubMed
2011 Exploring the Roles of Nucleobase Desolvation and Shape Complementarity during the Misreplication of O(6)-Methylguanine.
D. Chavarria, A. Ramos-Serrano, I. Hirao, and A. J. Berdis, J. Mol. Biol., 412, 325-339. PubMed
2011 Unnatural base pair systems for sensing and diagnostic applications.
M. Kimoto, R. S. Cox III, and I. Hirao, Expert Rev. Mol. Diagn. 11, 321-331.PubMed
2010 A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology.
M. Kimoto, T. Mitsui, R. Yamashige, A. Sato, S. Yokoyama, and I. Hirao, J. Am. Chem. Soc., 132, 15418-15426. PubMed
2010 Expansion of the genetic alphabet in nucleic acids by creating new base pairs.
I. Hirao and M. Kimoto, in The Chemical Biology of Nucleic Acids. (ed G. Mayer), 39-62. Wiley
2010 Site-specific incorporation of extra components into RNA by transcription using unnatural base pair systems.
M. Kimoto and I. Hirao, Methods Mol. Biol., 634, 355-369. PubMed
2010 Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis.
Y. Hikida, M. Kimoto, S. Yokoyama, and I. Hirao, Nature Protocols, 5, 1312-1323. PubMed
2010 A unique fluorescent base analogue for the expansion of the genetic alphabet.
M. Kimoto, T. Mitsui, S. Yokoyama, and I. Hirao, J. Am. Chem. Soc., 132, 4988-4989. PubMed
2009 Cell-Free Synthesis of Proteins with Unnatural Amino Acids.
The PURE System and Expansion of the Genetic Code
I. Hirao, T. Kanamori, and T. Ueda, Protein Engineering, 22, 271-290. SpingerLink
2009 An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules.
M. Kimoto, R. Kawai, T. Mitsui, S. Yokoyama, and I. Hirao, Nucleic Acids Res., 37, e14. PubMed
2008 Phosphoserine aminoacylation of tRNA bearing an unnatural base anticodon.
R. Fukunaga, Y. Harada, I. Hirao, and S. Yokoyama, Biochem. Biophys. Res. Commun., 372, 480-485. PubMed
2007 An efficient unnatural base pair for PCR amplification.
I. Hirao, T. Mitsui, M. Kimoto, and S. Yokoyama, J. Am. Chem. Soc., 129, 15549-15555. PubMed
2007 Cytostatic evaluations of nucleoside analogs related to unnatural base pairs for a genetic expansion system.
M. Kimoto, K. Moriyama, S. Yokoyama, and I. Hirao, Bioorg. Med. Chem. Lett., 17, 5582-5585. PubMed
2007 Fluorescent probing for RNA molecules by an unnatural base-pair system.
M. Kimoto, T. Mitsui, Y. Harada, A. Sato, S. Yokoyama, and I. Hirao, Nucleic Acids Res., 35, 5360-5369. PubMed
2007 Characterization of fluorescent, unnatural base pairs.
T. Mitsui, M. Kimoto, R. Kawai, S. Yokoyama, and I. Hirao, Tetrahedron, 63, 3528-3537.
2006 Unnatural base pair systems for DNA/RNA-based biotechnology.
I. Hirao, Curr. Opin. Chem. Biol., 10, 622-627. PubMed
2006 An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA.
I. Hirao, M. Kimoto, T. Mitsui, T. Fujiwara, R. Kawai, A. Sato, Y. Harada, and S. Yokoyama, Nat. Methods, 3, 729-735. PubMed
2006 Placing extracomponents into RNA by specific transcription using unnatural base pair systems.
I. Hirao, BioTechniques, 40, 711-717. PubMed
2005 Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs.
R. Kawai, M. Kimoto, S. Ikeda, T. Mitsui, M. Endo, S. Yokoyama, and I. Hirao, J. Am. Chem. Soc., 127, 17286-17295. PubMed
2005 Interaction analysis between tmRNA and SmpB from Thermus thermophilus.
N. Nameki, T. Someya, S. Okano, R. Suemasa, M. Kimoto, K. Hanawa-Suetsugu, T. Terada, M. Shirouzu, I. Hirao, H. Takaku, H. Himeno, A. Muto, S. Kuramitsu, S. Yokoyama, and G. Kawai, J. Biochem., 138, 729-739. PubMed
2005 Site-specific biotinylation of RNA molecules by transcription using unnatural base pairs.
K. Moriyama, M. Kimoto, T. Mitsui, S. Yokoyama, and I. Hirao, Nucleic Acids Res., 33, e129. PubMed
2005 An efficient unnatural base pair for a base-pair-expanded transcription system.
T. Mitsui, M. Kimoto, Y. Harada, S. Yokoyama, and I. Hirao, J. Am. Chem. Soc., 127, 8652-8658. PubMed
2004 A two-unnatural base pair system toward the expansion of the genetic code.
I. Hirao, Y. Harada, M. Kimoto, T. Mitsui, T. Fujiwara, and S. Yokoyama, J. Am. Chem. Soc., 126, 13298-13305. PubMed
2004 Unnatural base pairs between 2- and 6-substituted purines and 2-oxo(1H)pyridine for expansion of the genetic alphabet.
I. Hirao, T. Fujiwara, M. Kimoto, and S. Yokoyama, Bioorg. Med. Chem. Lett., 14, 4887-4890. PubMed
2004 A quantitative, non-radioactive single-nucleotide insertion assay for analysis of DNA replication fidelity by using an automated DNA sequencer.
M. Kimoto, S. Yokoyama, and I. Hirao, Biotechnol. Lett., 26, 999-1005. PubMed
2004 Unnatural base pairs mediate the site-specific incorporation of an unnatural hydrophobic components into RNA transcripts.
M. Endo, T. Mitsui, T. Okuni, M. Kimoto, I. Hirao, and S. Yokoyama, Bioorg. Med. Chem. Lett., 14, 2593-2596. PubMed
2004 In vitro selection of RNA aptamers that bind to colicin E3 and structurally resemble the decoding site of 16S ribosomal RNA,
I. Hirao, Y. Harada, T. Nojima, Y. Osawa, H. Masaki, and S. Yokoyama, Biochemistry, 43, 3214-3221. PubMed
2004 Site-specific incorporation of a photo-crosslinking component into RNA by T7 transcription mediated by unnatural base pairs.
M. Kimoto, M. Endo, T. Mitsui, T. Okuni, I. Hirao, and S. Yokoyama, Chem. Biol., 11, 47-55. PubMed
2004 Structures of d(GCGAAGC) and d(GCGAAAGC) (tetragonal form): a switching of partners of the sheared G.A pairs to form a functional G.AxA.G crossing.
T. Sunami, J. Kondo, I. Hirao, K. Watanabe, K. Miura, and A. Takenaka, Acta Crystallogr. D. Biol. Crystallorgr., 60, 422-431. PubMed
2004 Structure of d(GCGAAAGC) (hexagonal form): a base-intercalated duplex as a stable structure.
T. Sunami, J. Kondo, I. Hirao, K. Watanabe, K. Miura, and A. Takenaka, Acta Crystallogr. D. Biol. Crystallorgr., 60, 90-96. PubMed
2003 An unnatural hydrophobic base, 4-propynylpyrrole-2-carbaldehyde, as an efficient pairing partner of 9-methylimidazo[(4,5)-b]pyridine.
T. Mitsui, M. Kimoto, A. Sato, S. Yokoyama, and I. Hirao, Bioorg. Med. Chem. Lett., 13, 4515-4518. PubMed
2003 An Unnatural Hydrophobic Base Pair with Shape Complementarity between Pyrrole-2-carbaldehyde and 9-Methylimidazo[(4,5)-b]pyridine
T. Mitsui, A. Kitamura, M. Kimoto, T. To, A. Sato, I. Hirao, and S. Yokoyama, J. Am. Chem. Soc., 125, 5298-5307. PubMed
2002 Crystal Structure of d(GCGAAAGCT) Containing Parallel-stranded Duplex with Homo Base Pairs and Anti-Parallel Duplex with Watson-Crick Base Pairs.
T. Sunami, J. Kondo, T. Kobuna, I. Hirao, K. Watanabe, K. Miura, and A. Takenaka, Nucleic Acids Res., 30, 5253-5260. PubMed
2002 Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells.
K. Sakamoto, A. Hayashi, A. Sakamoto, D. Kiga, H. Nakayama, A. Soma, T. Kobayash, M. Kitabatake, K. Takio, K. Saito, M. Shirouzu, I. Hirao and S. Yokoyama, Nucleic Acids Res., 30, 4692-4699. PubMed
2002 An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system.
D. Kiga, K. Sakamoto, K. Kodama, T. Kigawa, T. Matsuda, T. Yabuki, M. Shirouzu, Y. Harada, H. Nakayama, K. Takio, Y. Hasegawa, Y. Endo, I. Hirao, and S. Yokoyama, Proc. Natl. Acad. Sci. USA, 99, 9715-9720. PubMed
2002 A unique unnatural base pair between a C analogue, pseudoisocytosine, and an A analogue, 6-methoxypurine, in replication.
I. Hirao, M. Kimoto, S. Yamakage, M. Ishikawa, J. Kikuchi, and S. Yokoyama, Bioorg. Med. Chem. Lett., 12, 1391-1393. PubMed
2002 An unnatural base pair for incorporating amino acid analogs into proteins.
I. Hirao, T. Ohtsuki, T. Fujiwara, T. Mitsui, T. Yokogawa, T. Okuni, H. Nakayama, K. Takio, T. Yabuki, T. Kigawa, T. Yokogawa, K. Nishikawa and S. Yokoyama, Nat Biotechnol., 20, 177-182. PubMed
2002 Anti-(Raf-1) RNA aptamers that inhibit Ras-induced Raf-1 activation.
M. Kimoto, M. Shirouzu, S. Mizutani, H. Koide, Y. Kaziro, I. Hirao, and S. Yokoyama, Eur. J. Biochem., 269, 697-704. PubMed
2001 Shifted positioning of the anticodon nucleotide residues of amber suppressor tRNA species by Escherichia coli arginyl-tRNA synthetase.
D. Kiga, K. Sakamoto, S. Sato, I. Hirao and S. Yokoyama, Eur. J. Biochem. 268, 6207-6213. PubMed
2001 Synthesis of DNA templates containing the fifth base, 2-amino-6-(N,N-dimethylamino)purine, for specific transcription involving unnatural base pairs
I. Hirao, T. Nojima, T. Mitsui, and S. Yokoyama, Chem. Lett., 914-915.
2001 Synthesis of 6-(2-thienyl)purine nucleoside derivatives that form unnatural base pairs with pyridin-2-one nucleosides.
T. Fujiwara, M. Kimoto, H. Sugiyama, I. Hirao, and S. Yokoyama, Bioorg. Med. Chem. Lett., 11, 2221-2223. PubMed
2001 Unnatural base pairs for specific transcription.
T. Ohtsuki, M. Kimoto, M. Ishikawa, T. Mitsui, I. Hirao and S. Yokoyama, Proc. Natl. Acad. Sci. USA, 98, 4922-4925. PubMed
2000 Synthesis of 3-(2-Deoxy-b-D-ribofuranosyl)pyridin-2-one and 2-Amino-6-(N,N-dimethylamino)-9-(2-deoxy-b-D-ribofuranosyl)purine Derivatives for an Unnatural Base Pair.
M. Ishikawa, I. Hirao, and S. Yokoyama, Tetrahedron Lett., 41, 3931-3934.
2000 Dual Specificity of the Pyrimidine Analog, 4-Methylpyridin-2-one, in DNA Replication.
I. Hirao, T. Ohtsuki, T. Mitsui and S. Yokoyama, J. Am. Chem. Soc., 122, 6118-6119.
2000 The Effect of Hairpin DNA Fragments on E. coli Poly(U)-Dependent Poly(Phe) Synthesis.
S. Yoshizawa, K. Watanabe, K. Miura, and I. Hirao, Chem. Lett., 154-155.
2000 RNA aptamers that bind to and inhibit the ribosome-inactivating protein, pepocin.
I. Hirao, K. Madin, Y. Endo, S. Yokoyama, and A. D. Ellington, J. Biol. Chem. 275, 4943-4948. PubMed
1999 The limits of specificity: An experimental analysis with RNA aptamers to MS2 coat protein variants.
I. Hirao, M. Spingola, D. Peabody, and A. D. Ellington, Mol. Divers.,4, 75-89. PubMed
1998 RNA aptamers that specifically bind to the Ras-binding domain of Raf-1.
M. Kimoto, K. Sakamoto, M. Shirouzu, I. Hirao, and S. Yokoyama, FEBS Lett., 441, 322-326. PubMed
1998 Crystal structures of a series of RNA aptamers complexed to the same protein target.
S. Rowsell, N. Stonehouse, M. A. Convery, C. J. Adams, A. D. Ellington, I. Hirao, D. S. Peabody, P. G. Stockley, and S. E. V. Philips, Nature Struct. Biol., 5, 970-975. PubMed
1998 1,1,3,3-Tetraisopropyl-3-(2-(triphenylmethoxy)ethoxy)disiloxane-1-yl group, a potential 5’-O-protecting group for solid-phase RNA synthesis.
I. Hirao, M. Koizumi, Y. Ishido, and A. Andrus, Tetrahedron Lett., 39, 2989-2992.
1998 Crystal structure of an RNA aptamer-protein complex at 2.8A resolution.
M. A. Convery, S. Rowsell, N. Stonehouse, A. D. Ellington, I. Hirao, J. B. Murray, D. S. Peabody, S. E. V. Phillips, and P. G. Stockley, Nature Struct. Biol., 5, 133-139. PubMed
1997 Landscapes for Molecular Evolution: Lessons from In Vitro Selection Experiments with Nucleic Acids.
S. Jhaveri, I. Hirao, S. D. Bell, K. Uphoff, and A. D. Ellington, Combinatorial Chemistry and Molecular Diversity, 1:169-191
1997 GNA-trinucleotide loop sequences producing extraordinarily stable DNA mini-hairpins.
S. Yoshizawa, G. Kawai, K. Watanabe, K. Miura, and I. Hirao, Biochemistry, 36, 4761-4767. PubMed
1995 Re-creating the RNA world.
I. Hirao and A. D. Ellington, Curr. Biol., 5, 1017-1022. PubMed
1995 Human cystatin A is inactivated by engineered truncation. The NH2-terminal region of the cysteine proteinase inhibitor is essential of expression of its inhibitory activity.
K. Shibuya, H. Kaji, T. Itoh, Y. Ohyama, A. Tsujikami, S. Tate, A. Takeda, I. Kumagai, I. Hirao, K. Miura, F. Inagaki, and T. Samejima, Biochemistry, 34, 12185-12192. PubMed
1994 Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat.
I. Hirao, G. Kawai, S. Yoshizawa, Y. Nishimura, Y. Ishido, K. Watanabe, and K. Miura, Nucleic Acids Res., 22, 576-582. PubMed
1994 Nuclease resistance of an extraordinarily thermostable mini-hairpin DNA fragment, d(GCGAAGC) and its application to in vitro protein synthesis.
S. Yoshizawa, T. Ueda, Y. Ishido, K. Miura, K. Watanabe, and I. Hirao, Nucleic Acids Res., 22, 2217-2221. PubMed
1994 Higher-order structure of bovine mitochondrial tRNA(Ser)UGA: chemical modification and computer modeling.
Y. Watanabe, G. Kawai, T. Yokogawa, N. Hayashi, Y. Kumazawa, T. Ueda, K. Nishikawa, I. Hirao, K. Miura, and K. Watanabe, Nucleic Acids Res., 22, 5378-5384. PubMed
1993 Effect of tandem repeated AUG codons on translation efficiency of eukaryotic mRNA carrying a short leader sequence.
M. Wakiyama, I. Hirao, I. Kumagai, and K. Miura, Mol. Gen. Genet., 238, 59-64. PubMed
1993 Stabilization of mRNA in an Escherichia coli cell-free translation system.
I. Hirao, S. Yoshizawa, and K. Miura, FEBS Lett., 321, 169-172. PubMed
1992 Extraordinarily stable mini-hairpins: electrophoretical and thermal properties of the various sequence variants of d(GCGAAAGC) and their effect on DNA sequencing.
I. Hirao, Y. Nishimura, Y. Tagawa, K. Watanabe, and K. Miura, Nucleic Acids Res., 20, 3891-3896. PubMed
1991 Gel electrophoresis using a fluorescence agent for analysis and purification of synthetic DNA fragments.
I. Hirao, S. Yoshizawa, and K. Miura, Nucleic Acids Res., 19, 4003. PubMed
1991 Synthesis of fused oligoribonucleotides with trideoxyribo- nucleotide containing phosphorothioate to stabilize against nuclease activity.
M. Ishikawa, K. Ikebukuro, I. Hirao, and K. Miura, Nucleosides & Nucleotides, 10, 1377-1390.
1991 A novel cloverleaf structure found in mammalian mitochondrial tRNASer(UCN).
T. Yokogawa, Y. Watanabe, Y. Kumazawa, T. Ueda, I. Hirao, K. Miura, and K. Watanabe, Nucleic Acids Res., 19, 6101-6105. PubMed
1991 Solid phase synthesis of oligoribonucleotides by the phosphoroamidite approach using 2'-O-1-(isopropoxy)ethyl protection.
O. Sakatsume, T. Yamaguchi, M. Ishikawa, I. Hirao, K. Miura, and H. Takaku, Tetrahedron, 47, 8717-8728.
1990 Oligonucleotide synthesis in terms of a novel type of polymer- support; a cellulose acetate functionalized with 4-(2-hydroxyl- sulfonyl)dihydrocinnamoyl substituent.
K. Kamaike, Y. Hasegawa, I. Masuda, Y. Ishido, K. Watanabe, I. Hirao, and K. Miura, Tetrahedron, 46, 163-184.
1990 Synthesis and properties of an initiation codon analog consisting of 2'-O-methyl nucleotides.
I. Hirao, M. Okubo, M. Ishikawa, and K. Miura, Nucleosides & Nucleotides, 9, 1113-1122.
1990 Unique hairpin structures occurring at the replication origin of phage G4 DNA.
I. Hirao, M. Ishida, K. Watanabe, and K. Miura, Biochim. Biophys. Acta, 1087, 199-204. PubMed
1989 Extraordinary stable structure of short single-stranded DNA fragments containing a specific base sequence: d(GCGAAAGC).
I. Hirao, Y. Nishimura, T. Naraoka, K. Watanabe, Y. Arata, and K. Miura, Nucleic Acids Res., 17, 2223-2231. PubMed
1989 Synthesis of nonadeca- and octadecaribonucleotides using the solid-phase phosphotriester with tetrahydropyranyl groups as the 2'-hydroxyl-protecting group.
I. Hirao, M. Ishikawa, H. Hori, K. Watanabe, and K. Miura, Bull. Chem. Soc. Jpn., 62, 1995-2001.
1989 Synthesis of oligoribonucleotides by the hydroxybenzotriazole- activated phosphotriester/dicyclohexylcarbodiimide system.
I. Hirao, and K. Miura, Chem. Lett., 1799-1802 .
1988 Synthetic oligodeoxyribonucleotides showing abnormal mobilities on polyacrylamide gel electrophoresis.
I. Hirao, T. Naraoka, S. Kanamori, M. Nakamura, and K. Miura, Biochem. Int., 16, 157-162. PubMed
1986 Partial synthesis of leader sequence of phage f1 coat protein mRNA.
I. Hirao, M. Ishikawa, and K. Miura, Chem. Lett., 1929-1932.
1986 Regioselective phenylcarbamoylation of purine and pyrimidine ribonucleosides through dibutyltin oxide - and tertiary amine - phenyl isocyanate systems.
I. Hirao, K. Itoh, S. Nishino, Y. Araki, and Y. Ishido, Carbohydr. Res., 152, 159-172.
1983 Chemical conversion of some ribonucleosides into the corresponding b-D-arabinofuranosyl derivatives.
N. Sakairi, I. Hirao, Y. Zama, and Y. Ishido, Nucleosides & Nucleotides, 2, 221-229.
1982 Ion selectivities of some extracellular viscous polysaccharides from red algae.
T. Akahane, S. Kawashima, I. Hirao, T. Shimizu, and A. Minakata, Polymer J., 14, 181-188.
1982 Bis(tributyltin) oxide - phenyl isocyanate system for regio- selective (phenylcarbamoyl)ation of purine and pyrimidine ribonucleosides.
I. Hirao, K. Itoh, N. Sakairi, Y. Araki, and Y. Ishido, Carbohydr. Res., 109, 181-205
1980 Photocyclization of 2'-hydroxychalcones to 4-flavanones.
R. Matsushima, and I. Hirao, Bull. Chem. Soc. Jpn., 53, 518-522.
1979 Regioselective phenylcarbamoylation of the hydroxyl groups of purine and pyrimidine ribonucleosides with bis(tributyltin) oxide - phenyl isocyanate.
Y. Ishido, I. Hirao, N. Sakairi, and Y. Araki, Heterocycles, 13, 181-185.